6年级数学知识大全

网上有关“6年级数学知识大全”话题很是火热,小编也是针对6年级数学知识大全寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

 我为大家收集整理了六年级数学知识大全,供大家学习借鉴参考,希望对你有帮助!

 6年级数学知识大全之小学数学图形计算公式

 1、正方形 (C:周长 S:面积 a:边长 )

 周长=边长?4 C=4a 面积=边长?边长 S=a?a

 2、正方体 (V:体积 a:棱长 )

 表面积=棱长?棱长?6 S表=a?a?6 体积=棱长?棱长?棱长 V=a?a?a

 3、长方形( C:周长 S:面积 a:边长 )

 周长=(长+宽)?2 C=2(a+b) 面积=长?宽 S=ab

 4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)

 (1)表面积(长?宽+长?高+宽?高)?2 S=2(ab+ah+bh) (2)体积=长?宽?高 V=abh

 5、三角形 (s:面积 a:底 h:高)

 面积=底?高?2 s=ah?2 三角形高=面积 ?2?底 三角形底=面积 ?2?高

 6、平行四边形 (s:面积 a:底 h:高)

 面积=底?高 s=ah

 7、梯形 (s:面积 a:上底 b:下底 h:高)

 面积=(上底+下底)?高?2 s=(a+b)? h?2

 8、圆形 (S:面积 C:周长 л d=直径 r=半径)

 (1)周长=直径?л=2?л?半径 C=лd=2лr (2)面积=半径?半径?л

 9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)

 (1)侧面积=底面周长?高=ch(2лr或лd) (2)表面积=侧面积+底面积?2

 (3)体积=底面积?高 (4)体积=侧面积?2?半径

 10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径)

 体积=底面积?高?3

 11、总数?总份数=平均数

 12、和差问题的公式:(和+差)?2=大数 (和-差)?2=小数

 13、和倍问题: 和?(倍数-1)=小数 小数?倍数=大数 (或者 和-小数=大数)

 14、差倍问题: 差?(倍数-1)=小数 小数?倍数=大数 (或 小数+差=大数)

 15、相遇问题

 相遇路程=速度和?相遇时间; 相遇时间=相遇路程?速度和; 速度和=相遇路程?相遇时间

 16、浓度问题

 溶质的重量+溶剂的重量=溶液的重量 溶质的重量?溶液的重量?100%=浓度

 溶液的重量?浓度=溶质的重量 溶质的重量?浓度=溶液的重量

 17、利润与折扣问题

 利润=售出价-成本; 利润率=利润?成本?100%=(售出价?成本-1)?100%

 涨跌金额=本金?涨跌百分比; 利息=本金?利率?时间; 税后利息=本金?利率?时间?(1-20%)

 6年级数学知识大全之常用的数量关系式

 1、每份数?份数=总数 总数?每份数=份数 总数?份数=每份数

 2、1倍数?倍数=几倍数 几倍数?1倍数=倍数 几倍数?倍数=1倍数

 3、速度?时间=路程 路程?速度=时间 路程?时间=速度

 4、单价?数量=总价 总价?单价=数量 总价?数量=单价

 5、工作效率?工作时间=工作总量 工作总量?工作效率=工作时间 工作总量?工作时间=工作效率

 6、加数+加数=和 和-一个加数=另一个加数

 7、被减数-减数=差 被减数-差=减数 差+减数=被减数

 8、因数?因数=积 积?一个因数=另一个因数

 9、被除数?除数=商 被除数?商=除数 商?除数=被除数

 6年级数学知识大全之常用单位换算

 长度单位换算

 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米

 面积单位换算:

 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米

 1平方分米=100平方厘米 1平方厘米=100平方毫米

 体(容)积单位换算:

 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升

 1立方厘米=1毫升 1立方米=1000升

 重量单位换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤

 人民币单位换算: 1元=10角 1角=10分 1元=100分

 时间单位换算:

 1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时

 1时=60分 1分=60秒 1时=3600秒

 6年级数学知识大全之基本概念

 第一章 数和数的运算

 一 概念

 (一)整数

 1 整数的意义: 自然数和0都是整数。

 2 自然数:

 我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。

 一个物体也没有,用0表示。0也是自然数。

 3计数单位

 一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。

 每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

 4 数位: 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

 5数的整除

 整数a除以整数b(b ? 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。 如果数a能被数b(b ? 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。

 因为35能被7整除,所以35是7的倍数,7是35的约数。

 一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

 一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12其中最小的倍数是3 ,没有最大的倍数。

 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。 个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。

 一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。 一个数各位数上的和能被9整除,这个数就能被9整除。

 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

 一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

 能被2整除的数叫做偶数。

 不能被2整除的数叫做奇数。

 0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

 一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

 1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

 每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3?5,3和5 叫做15的质因数。

 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

 例如把28分解质因数

 几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。

 公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

 1和任何自然数互质。

 相邻的两个自然数互质。

 两个不同的质数互质。

 当合数不是质数的倍数时,这个合数和这个质数互质。

 两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。 如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。

 如果两个数是互质数,它们的最大公约数就是1。

 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18

 3的倍数有3、6、9、12、15、18 其中6、12、18是2、3的公倍数,6是它们的最小公倍数。。 如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

 如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

 几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

 (二)小数

 1 小数的意义

 把整数1平均分成10份、100份、1000份 得到的十分之几、百分之几、千分之几 可以用小数表示。

 一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几

 一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

 在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位?十分之一?和整数部分的最低单位?一?之间的进率也是10。

 2小数的分类

 纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。

 带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。

 有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。

 无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 3.1415926

 无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:?

 循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 0.0333 12.109109

 一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 的循环节是? 9 ? , 0.5454 的循环节是? 54 ? 。

 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 0.5656 混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 0.03333 写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。例如: 3.777 简写作 0.5302302 简写作 。

 (三)分数

 1 分数的意义

 把单位?1?平均分成若干份,表示这样的一份或者几份的数叫做分数。

 在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位?1?平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

 把单位?1?平均分成若干份,表示其中的一份的数,叫做分数单位。

 2 分数的分类

 真分数:分子比分母小的分数叫做真分数。真分数小于1。

 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

 3 约分和通分

 把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

 分子分母是互质数的分数,叫做最简分数。

 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

 (四)百分数

 1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。

 6年级数学知识大全之运算定律

 1. 加法交换律:

 两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

 2. 加法结合律:

 三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

 3. 乘法交换律:

 两个数相乘,交换因数的位置它们的积不变,即a?b=b?a。

 4. 乘法结合律:

 三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a?b)?c=a?(b?c) 。

 5. 乘法分配律:

 两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)?c=a?c+b?c 。

 6. 减法的性质:

 从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。

六年级数学必考知识点有哪些?

第一单元 圆

 1、使学生认识圆的特征:圆的半径、直径、圆心。认识在同圆内半径和直径的关系。知道圆是轴对称图形,有无数条对称轴,而这些对称轴都过圆心。知道生活中有了圆才使我们的生活更美好。

 2、认识同心圆、等圆。知道圆的位置由圆心决定,圆的大小由半径或直径决定。等圆的半径相等,位置不同;而同心圆的半径不同,位置相同。

 3、使学生知道圆的周长和圆周率的含义,掌握圆的周长的计算公式,能够正确地计算圆的周长.介绍祖冲之在圆周率研究上的成就,渗透爱国主义教育。在运用上,要能根据圆的周长算直径或半径,会算半圆的周长:圆的周长×1/2+直径。会求组合图形的周长。

 4、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

 5、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。会灵活运用圆的面积公式。已知圆的周长会算圆的面积,会求组合图形的面积。会算圆环的面积,并且知道在周长相等的情况下,正方形、长方形、圆三种图形中,圆的面积。

 6、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

 第二单元 百分数的应用

 本单元重点讲解百分数在生活中的应用,知识点为:

 1、知道百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。百分数通常不写成分数形式,而用百分号“%”表示;百分数有时也定义为分母是100的分数,但百分数与分数是有区别的:分数既可表示具体的量,又可表示两个数量间的倍比关系;然而百分数只能表示两个数量间的倍比关系;所以是不名数,也就是不能带单位的数。

 2、在具体情景中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。

 3、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。

 4、知道出勤率、出粉率、成活率等百分数的意义及在实际生活中的应用,会计算这种百分数。

 5、知道成数、打折的含义。表示一个数是另一个数十分之几、百分之几的数,叫做成数。打折就是按原价的百分之几十、十分之几出售。八五折就是按原价的85%出售。成数和折扣数不能用小数表示。

 6、能解决“比一个数增加百分之几的数是多少”或“比一个数减少百分之几的数是多少”的实际问题。

 7、进一步加强对百分数的意义的理解,并能根据百分数的意义列方程解决实际问题,会解含有百分数的方程。

 8、能利用百分数的有关知识,解决一些与储蓄有关的实际问题,提高解决实际问题的能力。知道利息是本金存入银行过一段时间取出后多出来的钱;本金是存入银行的钱;利率就是某段时间中利息占本金的百分比;利息税是国家银行规定的针对利息收入的税收。会计算利息。利息=本金×利率×时间

 9、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。

 第三单元 图形的变换

 1、通过观察、操作、想象,知道一个简单图形是怎样经过平移或旋转制作复杂图形的过程,体验图形的变换,发展空间观念。并能借助方格纸上的操作和分析,有条理地表达图形的平移或旋转的变换过程。

 2、能利用七巧板在方格纸上变换各种图形。能运用图形的变换在方格纸上设计美丽的图案,进一步体会平移、旋转和轴对称在设计图案中的作用。

 3、欣赏图案,感受图形世界的神奇。通过生活中有趣而美丽的图案,认识数学的美,体会图形世界神奇。

 第四单元 比的认识

 1、能从具体情境中抽象出比的过程,理解比的意义。

 2、能正确读写比,会求比值,理解比与除法、分数的关系。

 3、能利用比的知识解释一些简单的生活问题,感受比在生活中的广泛存在。

 4、理解化简比的必要性,能运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

 5、能运用比的意义解决按照一定的比进行分配的实际问题,提高解决实际问题的能力。

 拓展能力:能用求比值的方法化简比。

 第五单元 统计

 1、知道复式条形统计图、复式折线统计图的特点,理解单式与复式统计图的异同,并能在有纵轴、横轴的图上用复式条形统计图、复式折线统计图表示相应的数据,体会数据的作用。

 2、能看懂复式条形统计图,并能根据复式条形统计图中的有关数据作简单的分析,判断和预测。

 3、会进行数据的收集与整理。并通过数据分析发现问题,从而决定用什么什么统计图来描述数据。

 第六单元 观察物体

 1、能正确辨认从不同方向(正面、侧面、上面)观察到的立体图形(5个小正方体组合)的形状,并能画出草图。

 2、能根据从正面、侧面、上面观察到的平面图形还原立体图形,进一步体会从三个方面观察就可以确定立体图形的形状,能根据给定的两个方向观察到的平面图形的形状,确定搭成这个立体图形所需要的正方体的数量范围。

 3、给合生活实际,经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点、观察角度的变化而变化,并能利用所学的知识解释生活中的一些现象。

人教版小学六年级上册数学知识点各单元

六年级数学必考知识点如下:

1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。

2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。

3、能借助数轴初步学会比较正数、0和负数之间的大小。

4、16℃读作十六摄氏度,表示零上16℃;-16℃读作负十六摄氏度,表示零下16℃。

5、如果2000表示存入2000元,那么-500表示支出了500元。向东走3m记作+3,向西4m记作-4。

6、在数轴上,从左到右的顺序就是数从小到大的顺序。0是正数和负数的分界点,所有的负数都在0的左边,也就是负数都比0小,而正数都比0大,负数都比正数小。负号后面的数越大,这个数就越小。

#六年级# 导语尽快地掌握科学知识,迅速提高学习能力, 为大家准备了人教版小学六年级上册数学知识点各单元,希望对大家有所帮助!

分数乘法

 一、分数乘法

 (一)、分数乘法的计算法则:

 1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)

 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

 3、为了计算简便,能约分的要先约分,再计算。

 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

 (二)、规律:(乘法中比较大小时)

 一个数(0除外)乘大于1的数,积大于这个数。

 一个数(0除外)乘小于1的数(0除外),积小于这个数。

 一个数(0除外)乘1,积等于这个数。

 (三)、分数混合运算的运算顺序和整数的运算顺序相同。

 (四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

 乘法交换律:a×b=b×a

 乘法结合律:(a×b)×c=a×(b×c)

 乘法分配律:(a+b)×c=ac+bcac+bc=(a+b)×c

 二、分数乘法的解决问题

 (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)

 1、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面

 2、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×。

 3、写数量关系式技巧:

 (1)“的”相当于“×”“占”、“是”、“比”相当于“=”

 (2)分率前是“的”:单位“1”的量×分率=分率对应量

 (3)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量

分数除法

 一、分数除法

 1、分数除法的意义:

 分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

 2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。

 3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;

 (2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。

 4、“”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。

 二、分数除法解决问题

 (未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。)

 1、数量关系式和分数乘法解决问题中的关系式相同:

 (1)分率前是“的”:单位“1”的量×分率=分率对应量

 (2)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量

 2、解法:(建议:用方程解答)

 (1)方程:根据数量关系式设未知量为X,用方程解答。

 (2)算术(用除法):分率对应量÷对应分率=单位“1”的量

 3、求一个数是另一个数的几分之几:就一个数÷另一个数

 4、求一个数比另一个数多(少)几分之几:

 ①求多几分之几:大数÷小数–1②求少几分之几:1-小数÷大数

 或①求多几分之几(大数-小数)÷小数②求少几分之几:(大数-小数)÷大数

 针对练习:

 1、果园里有桃树560棵,占果树总数的1/2,果园里一共有果树多少棵?

 2、一条裤子75元,是一件上衣价格的1/2,一件上衣多少钱?

 3、一个修路队修一条路,第一天修了全长1/2,正好是160米,这条路全长是多少米?

 4、幼儿园买来2千克水果糖,是买来的牛奶糖的1/2,买来牛奶糖多少千克?

 5、新风小学去年植树320棵,相当于今年植树棵数的1/2,今年去年共植树多棵?

 6、一桶水,用去它的1/2,正好是15千克,这桶水重多少千克?

 7、王新买了一本书和一枝钢笔,书的价格是4元,正好是钢笔价格的1/2,钢笔价格是多少元?

 7、一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的1/2,这种超音速飞机每小时飞行多少千米?

比和比的应用

 (一)、比的意义

 1、比的意义:两个数相除又叫做两个数的比。

 2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

 例如15:10=15÷10=(比值通常用分数表示,也可以用小数或整数表示)

 ∶∶∶∶

 前项比号后项比值

 3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:路程÷速度=时间。

 4、区分比和比值

 比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

 比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

 5、根据分数与除法的关系,两个数的比也可以写成分数形式。

 6、比和除法、分数的联系:

 比前项比号“:”后项比值

 除法被除数除号“÷”除数商

 分数分子分数线“—”分母分数值

 7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

 8、根据比与除法、分数的关系,可以理解比的后项不能为0。

 体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

 (二)、比的基本性质

 1、根据比、除法、分数的关系:

 商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

 分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

 比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

 2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

 3、根据比的基本性质,可以把比化成最简单的整数比。

 4.化简比:

 ①用比的前项和后项同时除以它们的公因数。

 (1)②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

 ③两个小数的比:向右移动小数点的位置,先化成整数比再化简。

 (2)用求比值的方法。注意:最后结果要写成比的形式。

 如:15∶10=15÷10==3∶2

 5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

 如:已知两个量之比为,则设这两个量分别为。

 6、路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)

 工作总量一定,工作效率和工作时间成反比。

 (如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)

圆柱与圆锥

 一、圆柱的特征:

 1、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面,。

 2、圆柱的高:圆柱两个底面之间的距离叫做高。圆柱的高有无数条。

 3、圆柱的侧面展开图:圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

 4、圆柱的侧面积=底面周长×高即S侧=Ch或2πr×h

 5、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×πr2

 6、圆柱的体积=圆柱的底面积×高,即V=sh或πr2×h

 7、将一张长方形围成圆柱有两种方法,将一张长方形进行旋转一般也有两种。

 (进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。)

 二、圆锥的特征:

 1、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

 2、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)

 3、把圆锥的侧面展开得到一个扇形。4、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=Sh或V锥=πr2×h

 5、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。

 6、圆柱和圆锥的特征

 圆柱圆锥

 底面两个底面完全相同,都是圆形。一个底面,是圆形。

 侧面曲面,沿高剪开,展开后是长方形。曲面,沿顶点到底面圆周上的一条线段剪开,展开后是扇形。

 高两个底面之间的距离,有无数条。顶点到底面圆心的距离,只有一条。

 针对练习:

 1、圆柱形队鼓的侧面由铝皮围成,上、下底面蒙的是羊皮。队鼓的底面直径是6分米,高是2.6分米。做一个这样的队鼓,至少需要铝皮多少平方分米?羊皮呢?

 2、一个圆柱形的油桶,底面直径是0.6米,高是1米。做一个这样的油桶至少需要多少平方米铁皮?(得数保留两位小数)

 3.做一根长2米、管口直径0.15米的白铁皮通风管,至少需要白铁皮多少平方米?

 4.一个圆柱形的灯笼,底面直径是24厘米,高是30厘米。在灯笼的下底和侧面糊上彩纸,至少要多少平方厘米的彩纸?

 一、认识圆

 1、圆的定义:圆是由曲线围成的一种平面图形。

 2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等.

 3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

 4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。

 5、圆心确定圆的位置,半径确定圆的大小。

 6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。

 7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。用字母表示为:d=2r或r=

 8、轴对称图形:

 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线)

 9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。

 10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

 只有2条对称轴的图形是:长方形

 只有3条对称轴的图形是:等边三角形

 只有4条对称轴的图形是:正方形;

 有无数条对称轴的图形是:圆、圆环。

 二、圆的周长

 1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。

 2、圆周率实验:

 在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。

 发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。

 3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。

 用字母π(pai)表示。

 (1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。

 圆周率π是一个无限不循环小数。在计算时,一般取π≈3.14。

 (2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。

 (3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

 4、圆的周长公式:C=πdd=C÷π

 或C=2πrr=C÷2π

 5、在一个正方形里画一个的圆,圆的直径等于正方形的边长。

 在一个长方形里画一个的圆,圆的直径等于长方形的宽。

 6、区分周长的一半和半圆的周长:

 (1)周长的一半:等于圆的周长÷2计算方法:2πr÷2即πr

 (2)半圆的周长:等于圆的周长的一半加直径。计算方法:πr+2r

百分数

 一、百分数的意义和写法

 1、百分数的意义:表示一个数是另一个数的百分之几。

 百分数是指的两个数的比,因此也叫百分率或百分比。

 2、千分数:表示一个数是另一个数的千分之几。

 3、百分数和分数的主要联系与区别:

 (1)联系:都可以表示两个量的倍比关系。

 (2)区别:

 ①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;

 分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。

 ②、百分数的分子可以是整数,也可以是小数;

 分数的分子不能是小数,只能是除0以外的自然数。

 4、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示。

 二、百分数和分数、小数的互化

 (一)百分数与小数的互化:

 1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。

 2.百分数化成小数:把小数点向左移动两位,同时去掉百分号。

 (二)百分数的和分数的互化

 1、百分数化成分数:

 先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。

 2、分数化成百分数:

 ①用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。

 ②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

 (三)常见的分数与小数、百分数之间的互化

 =0.5=50% =0.2=20% =0.625=62.5%

 =0.25=25% =0.4=40% =0.125=12.5%

 =0.75=75% =0.6=60% =1.375=37.5%

 =0.0625=6.25% =0.8=80% =0.875=87.5%

 =0.04=4﹪ =0.08=8﹪= 0.12=12﹪ =0.16=16﹪

 三、用百分数解决问题

 (一)一般应用题

 1、常见的百分率的计算方法:

 ①合格率=②发芽率=

 ③出勤率=④达标率=

 ⑤成活率=⑥出粉率=

 ⑦烘干率=⑧含水率=

 一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。(一般出粉率在70、80%,出油率在30、40%。)

 2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题:

 数量关系式和分数乘法解决问题中的关系式相同:

 (1)分率前是“的”:单位“1”的量×分率=分率对应量

 (2)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量

 3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。

 解法:(建议:用方程解答)

 (1)方程:根据数量关系式设未知量为X,用方程解答。

 (2)算术(用除法):分率对应量÷对应分率=单位“1”的量

 4、求一个数比另一个数多(少)百分之几的问题:

 两个数的相差量÷单位“1”的量×100%或:

 ①求多百分之几:(大数-小数)÷小数

 ②求少百分之几:(大数-小数)÷大数

 (二)、折扣

 1、折扣:商品按原定价格的百分之几出售,叫做折扣。通称“打折”。

 几折就表示十分之几,也就是百分之几十。例如八折==80﹪,六折五=0.65=65﹪

 2、一成是十分之一,也就是10%。三成五就是十分之三点五,也就是35%

 (三)、纳税

 1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

 2、纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。

 3、应纳税额:缴纳的税款叫做应纳税额。

 4、税率:应纳税额与各种收入的比率叫做税率。

 5、应纳税额的计算方法:应纳税额=总收入×税率

 (四)利息

 1、存款分为活期、整存整取和零存整取等方法。

 2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

 3、本金:存入银行的钱叫做本金。

 4、利息:取款时银行多支付的钱叫做利息。

 5、利率:利息与本金的比值叫做利率。

 6、利息的计算公式:利息=本金×利率×时间

 7、注意:如要上利息税(国债和教育储藏的利息不纳税),则:

 税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)

扇形统计图

 一、扇形统计图的意义:

 用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。

 也就是各部分数量占总数的百分比(因此也叫百分比图)。

 二、常用统计图的优点:

 1、条形统计图:可以清楚的看出各种数量的多少。

 2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。

 3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。

 三、扇形的面积大小:

 在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)

 针对练习:

 一、我国国土总面积是960万平方千米。下面是我国地形分布情况统计图,请根据统计图回答问题。

 1、我国山地面积占总面积的百分之几?

 2、各类地形中,什么地形面积?什么最小?

 3、你还能得到哪些信息?

 4、请算出各类地形的实际面积,填入下表。

 地形种类山地丘陵高原盆地平原

 面积(万平方千米)

 二、小军家2012年11月支出情况统计如下图。聪聪家2012年11月的总支出是3600元。请你回答问题。

 1、这个月哪项出最多?支出了多少元?

 2、文化教育支出了多少元?购买衣物支出了多少元?

 3、购买衣物的支出比文化教育支出少百分之几?

 4、你还能提出什么问题?并解决你所提出的问题?

关于“6年级数学知识大全”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(20)

猜你喜欢

发表回复

本站作者才能评论

评论列表(3条)

  • 思萍的头像
    思萍 2025年11月24日

    我是相悦号的签约作者“思萍”

  • 思萍
    思萍 2025年11月24日

    本文概览:网上有关“6年级数学知识大全”话题很是火热,小编也是针对6年级数学知识大全寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。 我为大家收集...

  • 思萍
    用户112404 2025年11月24日

    文章不错《6年级数学知识大全》内容很有帮助

联系我们:

邮件:相悦号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信